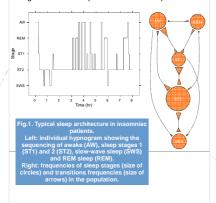
Multinomial logistic functions in Markov-chain models for modeling sleep architecture: external validation and covariate analysis


- Bizzotto R (1)*, Zamuner S (2), De Nicolao G (3), Gomeni R (2), Hooker AC (4), Karlsson MO (4)
 (1) Dept. of Information Engineering, University of Padova, Padova, Italy
 (2) Clinical Pharmacology/Modeling&Simulation, GlaxoSmithKline, Verona, Italy
 (3) Dept. of Computer Engineering and Systems Science, University of Pavia, Pavia, Italy
 (4) Dept. of Pharmaceutical Biosciences, Uppsala University, Sweden

В

Introduction

 The evaluation of the dynamics of sleep stage distribution through the night is considered a key feature in clinical studies investigating the treatment effects of new molecules for primary insomnia [1].

• A mixed-effect Markov-chain model based on piecewise linear multinomial logistic functions has been recently proposed [2, 3] to characterize the time course of transition probabilities between sleep stages in insomniac patients treated with placebo.

Objectives

- The aims of this work were to
- further develop the model proposed in [2, 3], perform the external validation of model structure B.
- and parameters estimates,
- C. explore the covariate effects

Methods

Data Two clinical studies were considered, A and B, with N_A = 116 and N_B = 81 insomniac patients, and similar protocols

B was used for external validation only.

 In each study, sequences of sleep stages at each 30-second nighttime interval were obtained from the first night of placebo administration

 Recorded sleep stages were awake (AW), stage 1 (ST1), stage 2 (ST2), slow-wave sleep (SWS) and REM sleep (REM).

Multinomial logistic functions in a Markov-chain model

 The time course of sleep stages was assumed to obey to a Markov-chain model, and a population approach was implemented with NONMEM VI. In particular, the relationship between time and individual transition probabilities between sleep stages was modeled through piecewise linear multinomial logit functions [3]:

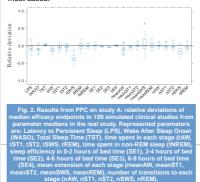
$$g_{lkm_{l}}(t) = \log \frac{p_{lkm}(t)}{p_{lkr}(t)}$$

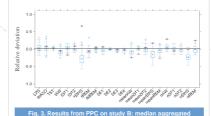
where p_{ikm}(t) is the probability of moving from sleep stage k at time t-1 to sleep stage m at time t for subject i, and similarly for p_{ikr}(t).

(Eq. 1)

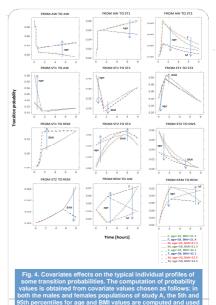
• Five sub-models were built, each one modeling the transitions from a specific sleep stage k.

ail: roberto.bizzotto@gmail.com




 Model building was based on dataset A and guided by model adequacy criteria (log likelihood ratio test and Akaike information criteria) and internal validation based on simulation (and re-estimation): posterior predictive checks (PPCs) as suggested by Gelman et al. [5], visual predictive checks and visual estimation checks as presented in [4]. • External validation of the final model was based on

- dataset B and relied on the evaluation of objective function values (OFVs), distributions of empirical Bayes estimates (EBEs), parameter values and posterior predictive checks (PPCs) as suggested by Gelman et al. [5].
- Age, gender and BMI were explored within С NONMEM through stepwise covariate modeling [6] on dataset A. Linear and piece-wise linear additive effects were tested on each logit at each different nighttime break-point.


Results

 The final model presented the following specifications with respect to [3]: r equal to k in Eq. 1; significant correlations in sub-models AW, ST1 and A ST2; time elapsed since the last change in sleep stage as a further predictor of the logits, through piece-wise linear additive functions; parameters in sub-model AW estimated as different values between initial sleeplessness and rest of the night; reduced number of model parameters (four transition probabilities were fixed to zero and knots number in piece-wise linear functions was reduced to one). • OFV reduction is shown in Table I (column 3). PPC on study A (Fig. 2) indicated a good agreement between simulated and observed efficacy endpoints in most cases.

 Only small and few differences could be found when a comparison between probability profiles estimated from A and B were compared. PPC performance on study B (Fig. 3) looked very similar to the one shown with Fig. 3 on the original data. • Age, gender and BMI were found to linearly affect various model parameters: see Fig. 4 and Table I (column 4). Reduction in inter-individual variability was generally not achieved. The application of PPC to the obtained full model did not show any relevant improvement in model performance.

Table I. OFVs for the 5 sub-models identified on dataset A and B on different scenarios.							
	sub-model	A, [2]	A, final model ^a	A, covariate effects inclusion ^{b.c}	B, parameter values from A	B, after likelihood maximization ^e	
		26983	-5321	-57 (7)	11627	-193	
		24264	-178	-16 (2)	19752	-241	
		49984	-1251	-28 (3)	33772	-331	
		9341	-961	0 (0)	5299	-85	
		14798	-111	-19 (2)	8906	-95	
	a delta OFV with respect to column 2						

Conclusions

в

С

 Previously proposed mixed-effect Markov-chain models for describing sleep architecture of insomniac patients treated with placebo [2, 3] were improved in terms of predictive performance and model parsimony.

 The final model was successfully validated with data from a new study. • Age, gender and BMI were detected as influential

covariates: their clinical relevance deserves further exploration in a wider population of insomniac subjects

References

- [1] Gimenez S et al. Psychopharmacol 2007; 190:507–16.
 [2] Karlsson MO et al. Clin Pharmacol Ther 2000; 68(2):175-
- (2) Rainsson NO et al. Unit Pharmacol Ther 2000, 66(2) 1
 (3) Bizzotto R et al. J Pharmacokinet Pharmacodyn 2010; 37:137-55.
 (4) Mezzalana E et al. PAGE 19 2010; Abstr 1893.
- [5] Gelman A et al. Bayesian data analysis. Chapman & Hall 1995, London, UK. [6] Jonsson EN et al. Pharm Res 1998; 15(9):1463-8